Voting Transitions in the 2019 Valencian Autonomous Community’s Elections
DOI:
https://doi.org/10.28939/iam.debats-en.2020-2Keywords:
vote transitions, ecological inference, Spanish electionsAbstract
The political fragmentation following the 2008 Financial Crisis and its economic, social, political and institutional fall-out have led to a growing left-right polarisation of politics and a weakening of the middle ground. The effective number of parliamentary parties is at an all-time high both in
the Spanish Parliament (Congreso) and in the Valencian Autonomous Parliament (Corts). Voters are spoilt for choice and switch party more often. This paper uses transfer matrices to analyse the shifting voting patterns in the European, General, Regional, and Local elections held during 2019 in The Valencian Country. The most salient result is the ever-shifting pattern at each end of the political spectrum. On the right wing, there is the steady advance of Vox. On the left wing, UP and Compromís draw from virtually the same pool of fickle voters, with UP picking up most votes in national elections and Compromís winning hands-down in regional and local elections.
Downloads
References
Antentas, J. M. (2017). Spain: From the Indignados Rebellion to Regime Crisis (2011-2016). Labor History, 58(1), 106-131. DOI: http://doi.org/10.1080/0023656X.2016.1239875.
Bacharach, M. (1970). Biproportional Matrices and Input-Output Change. Cambridge: Cambridge University Press. DOI: http://doi.org/10.1080/0953531042000219259
Becker, S., Fetzer, T., Novy, D. (2017). Who Voted for Brexit? A Comprehensive District-level Analysis. Economic Policy, 32(92), 601-650. DOI: http://doi.org/10.1093/epolic/eix017
Benedicto, J. and Ramos, M. (2018). Young People’s Critical Politicization in Spain in the Great Recession: A
Generational Reconfiguration? Societies, 8(89), 1-30. DOI: http://doi.org/10.3390/soc8030089
Biemer, P. P. (2010). Total Survey Error. Design, Implementation and Evaluation. Public Opinion Quarterly, 74, 817-848. DOI: http://doi.org/10.1093/poq/nfq058
Brown, P. J. and Payne, C. D. (1986). Aggregate Data, Ecological Regression and Voting Transitions. Journal of the American Statistical Association, 81, 453-460. DOI: http://doi.org/10.1007/978-3-642-11363-5_54
Cho, W. K. T. (1998). If the Assumption Fits: A Comment on the King Ecological Inference Solution. Political Analysis, 7, 143-163. DOI: http://doi.org/10.1093/pan/7.1.143
CIS (2019a). Estudio n. 3.242. Macrobarómetro de marzo 2019. Preelectoral Elecciones Generales 2019. Nota metodológica. Modelos CIS V108.
CIS (2019b). Estudio n. 3.244. Preelectoral Elecciones Autonómicas 2019. Comunidad Valenciana. Nota metodológica. Modelos CIS V41.
CIS (2019c) Estudio n. 3.245. Macrobarómetro de abril 2019. Preelectoral Elecciones al Parlamento Europeo, Autonómicas y Municipales 2019.
Corominas A., Lusa, A., Valvet M. D. (2015). Computing Voter Transitions: The Elections for the Catalan Parliament,from 2010 to 2012. Journal of Industrial Engineering and Management, 8(1), 122-136. DOI: http://doi.org/10.1080/00207543.2018.1530477
Couperus, S. and Tortola. P. D. (2019). Right-wing Populism’s (Ab)use of the Past in Italy and The Netherlands. Debats. Journal on Culture, Power and Society, 4, 105-118. https://doi.org/10.28939/iam.debats-en.2019-9
Duncan, O. and Davis, B. (1953). An Alternative to Ecological Correlation. American Sociological Review, 18, 665-666. DOI: http://doi.org/10.1177/0193841X9101500602
Forcina, A. and Marchetti, G. M. (2011). The Brown and Payne Model of Voter Transition Revisited. In S. Ingrassia, R. Rocci, and M. Vichi (ed.), New Perspectives in Statistical Modeling and Data Analysis: Studies in Classification, Data Analysis, and Knowledge Organization. Berlín: Springer. DOI: http://doi.org/10.1007/978-3-642-11363-5_1
Füle, E. (1994). Estimating Voter Transitions by Ecological Regression. Electoral Studies, 13, 313-330. DOI: http://doi.org/10.1016/0261-3794(94)90043-4.
Goodman, L. A. (1953). Ecological Regressions and the Behaviour of Individuals. American Sociological Review, 18, 663-666. DOI: http://doi.org/10.2307/2088122
Goodman, L. A. (1959). Some Alternatives to Ecological Correlation. American Journal of Sociology, 64(6), 610-625.
Greiner, D. and Quinn, K. M. (2010). Exit Polling and Racial Bloc Voting: Combining Individual-level and RxC Ecological Data. The Annals of Applied Statistics, 4, 1.774-1.796. DOI: http://doi.org/10.1214/10-AOAS353
Haunberger, S. (2010). The Effects of Interviewer, Respondent and Area Characteristics on Cooperation in Panel Surveys: a Multilevel Approach. Quality & Quantity, 44, 957-969. DOI: http://doi.org/10.1007/s11135-009-9248-5
Hawkes, A. G. (1969). An Approach to the Analysis of Electoral Swing. Journal of the Royal Statistical Society, Series A, 132, 68-79. DOI: http://doi.org/10.2307/2343756
Hunter, W. and Power, T. J. (2019). Bolsonaro and Brazil’s Illiberal Backlash. Journal of Democracy, 30(1), 68-82.
King, G. (1997). A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data. Princeton, Nueva Jersey: Princeton University Press. DOI: http://doi.org/10.2307/2585686
King, G., Rosen, O., Tanner, M. A. (1999). Binomial-beta Hierarchical Models for Ecological Inference. SociologicalMethods & Research, 28, 61-90. DOI: http://doi.org/10.1177/0049124199028001004
King, G., Rosen, O., Tanner, M. A. (ed.) (2004). Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.
Klima, A., Thurner, P. W., Molnar, C., Schlesinger, T., Küchenhoff, H. (2016). Estimation of Voter Transitions Based on Ecological Inference: An Empirical Assessment of Different Approaches. AStA — Advances in Statistical Analysis, 100, 133-159. DOI: http://doi.org/10.1007/s10182-015-0254-8
Klima, A., Schlesinger, T., Thurner, P. W., Küchenhoff, H. (2019). Combining Aggregate Data and Exit Polls
for the Estimation of Voter Transitions. Sociological Methods & Research, 48(2), 296-325. DOI: http://doi.org/10.1177/0049124117701477
Krumpal, I. (2013). Determinants of Social Desirability Bias in Sensitive Surveys: A Literature Review. Quality & Quantity, 47, 2.025-2.047. DOI: http://doi.org/10.1007/s11135-011-9640-9
Laakso, M. and Taagepera, R. (1979). Effective Number of Parties: A Measure with Application to West Europe. Comparative Political Studies, 12, 3-27. DOI: http://doi.org/10.1177/001041407901200101
Martín-Cubas, J., Bodoque, A., Pavía, J.M., Tasa, V., Veres-Ferrer, E. (2019). The ‘Big Bang’ of the Populist Parties in the European Union. The 2014 European Parliament Election. Innovation —The European Journal of Social Science Research, 32(2), 168-190. DOI: http://doi.org/10.1080/13511610.2018.1523711
McCarthy, C., Ryan, T. M. (1977). Estimates of Voter Transition Probabilities from the British General Elections of 1974. Journal of the Royal Statistical Society. Series A, 140, 78-85. DOI: http://doi.org/10.2307/2344516
Miller, W. L. (1972). Measures of Electoral Change Using Aggregate Data. Journal of the Royal Statistical Society, Series A, 135, 122-142. DOI: http://doi.org/10.1111/rssb.12318
Orriols, L. and Cordero, G. (2016). The Breakdown of the Spanish Two-Party System: The Upsurge of Podemos and Ciudadanos in the 2015 General Election. South European Society and Politics, 21(4), 469-492. DOI: http://doi.org/10.1080/13608746.20 16.1151127
Park, W. (2008). Ecological Inference and Aggregate Analysis of Elections. (PhD thesis, University of Michigan, The United States). Pavía-Miralles, J. M. (2005). Forecasts from Non-Random Samples: The Election Night Case. Journal of the American Statistical Association, 100, 1.113-1.122. DOI: http://doi.org/10.1198/016214504000001835
Pavía, J. M. (2010). Improving Predictive Accuracy of Exit Polls. International Journal of Forecasting, 26, 68-81. DOI: http://doi.org/10.1016/j.ijforecast.2009.05.001
Pavía, J. M. (2016). Transferencia*Electoral, software registrado en la Universitat de València, número 9382. Date: 01/02/2016.
Pavía, J. M. and Aybar, C. (2018). Field Rules and Bias in Random Surveys with Quota Samples: An Assessment of CIS Surveys. SORT (Statistics and Operations Research Transactions), 42(2), 183-206. DOI: http://doi.org/10.2436/20.8080.02.74
Pavía, J. M. and Cantarino, I. (2017). Dasymetric Distribution of Votes in a Dense City. Applied Geography, 86, 22- 31. DOI: http://doi.org/10.1016/j.apgeog.2017.06.021
Pavía, J. M. and López-Quilez, A. (2013). Spatial Vote Redistribution in Redrawn Polling Units. Journal of the Royal Statistical Society, Series A – Statistics in Society 176(3), 655-678. DOI: http://doi.org/10.1111/j.1467-985X.2012.01055.x
Pavía, J. M. and Veres Ferrer, E. J. (2016a). Un nuevo estimador para disgregar totales poblacionales: El caso de los nuevos electores. Anales de Economía Aplicada, XXX, 817-826.
Pavía Miralles, J. M. and Veres Ferrer, E. J. (2016b). Desagregando estadísticas de población. In J. M. Herrerías and J. Callejón (ed.), Investigaciones en métodos cuantitativos para la economía y la empresa (p. 543-555). Granada: Editorial Universidad de Granada.
Pavía, J. M., Badal, E., García-Cárceles, B. (2016). Spanish Exit Polls: Sampling Error or Nonresponse Bias? Revista Internacional de Sociología, 74(3), e043. DOI: http://doi.org/10.3989/ris.2016.74.3.043
Pavía, J. M., Bodoque, A., Martín, J. (2016). The Birth of a New Party: Podemos, a Hurricane in the Spanish Crisis of Trust. Open Journal of Social Sciences, 4, 67-86. DOI: http://doi.org/10.4236/jss.2016.49008
Pavía, J. M., Cabrer, B., Sala, R. (2009). Updating Input-Output Matrices: Assessing Alternatives through Simulation. Journal of Statistical Computation and Simulation, 79, 1.467-1.498. DOI: http://doi.org/10.1080/00949650802415154
Pavía, J. M., Gil-Carceller, I., Rubio-Mataix, A., Coll, V., Alvarez-Jareño, J. A., Aybar, C., Carrasco-Arroyo, S. (2019). The Formation of Aggregate Expectations: Wisdom of the Crowds or Media Influence? Contemporary Social Science, 14(1), 132-143. DOI: http://doi.org/10.1080/21582041.2017.1367831
Payne, C., Brown, P., Hanna, V. (1986). By-election Exit Polls. Electoral Studies, 5, 277-287. DOI: http://doi.org/10.1016/0261- 3794(86)90015-6
Plescia, C. and De Sio, L. (2018). An Evaluation of the Performance and Suitability of R×C Methods for Ecological Inference with Known True Values. Quality & Quantity, 52(2), 669-683. DOI: http://doi.org/10.1007/s11135-017-0481-z
Puig, X. and Ginebra, J. (2015). Ecological Inference and Spatial Variation of Individual Behavior: National Divide and Elections in Catalonia. Geographical Analysis, 47(3), 262-283. DOI: http://doi.org/10.1111/gean.12056
Rama Caamaño, J. (2016). Ciclos electorales y sistema de partidos en España. Revista Jurídica Universidad Autónoma de Madrid, 34(II), 241-266. DOI: http://doi.org/10.1177/1354068815601347
Robinson, W. S. (1950). Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15(3), 351-357. DOI: http://doi.org/10.2307/2087175
Romero, R. (2014). Un modelo matemático para estimar el trasvase de votos entre partidos. Revista Digital de la Real Academia de Cultura Valenciana, 3-23.
Romero, R. (2015). Trasvase de votos entre partidos en las elecciones autonómicas catalanas del 27 de septiembre de 2015. Revista Digital de la Real Academia de Cultura Valenciana, 3-15.
Romero, R. (2016). Movilidad electoral entre las elecciones del 20D y del 26J en las comunidades autónomas valenciana, madrileña y andaluza. Revista Digital de la Real Academia de Cultura Valenciana. Segunda época, 1,1-25.
Romero, R., Pavía, J. M., Martín, J., Romero, G. (2019). Assessing Uncertainty of Voter Transitions Estimated from Aggregated Data: Application to 2017 French Presidential Elections, en revisión.
Rosen, O., Jiang, W., King, G., Tanner, M. A. (2001). Bayesian and Frequentist Inference for Ecological Inference: The RxC Case. Statistica Neerlandica, 55, 134-56. DOI: http://doi.org/10.1111/1467-9574.00162
Royo, S. (2014). Institutional Degeneration and the Economic Crisis in Spain. American Behavioral Scientist, 58(12), 1.568-1.591. DOI: http://doi.org/10.1177/0002764214534664
Skonieczny, A. (2018). Emotions and Political Narratives: Populism, Trump and Trade. Politics and Governance, 6(4), 62-72. DOI: http://doi.org/10.17645/pag.v6i4.1574
Torcal, M. (2014). The Decline of Political Trust in Spain and Portugal: Economic Performance or Political Responsiveness? American Behavioral Scientist, 58(12), 1.542-1.567. DOI: http://doi.org/10.1177/0002764214534662
Wakefield, J. (2004). Ecological Inference for 2x2 Tables (with discussion). Journal of Royal Statistical Society, Series A, 167, 385-445. DOI: http://doi.org/10.1111/j.1467-985x.2004.02046.x
Downloads
Published
How to Cite
Issue
Section
License
Without prejudice to the provisions of article 52 of Spanish Law 22/1987 of November 11 on Intellectual Property, BOE (official state bulletin) of November 17, 1987, and pursuant to said legislation, the author(s) surrender(s) free of charge its rights of edition, publication, distribution and sale of the article, for its publication in Debats. Journal on Culture, Power and Society.
Debats. Journal on Culture, Power and Society is published under the Creative Commons license system in accordance with the «Recognition - Non-Commercial (by-nc) modality: The generation of derivative works is permitted provided that commercial use is not made. Nor can the original work be used for commercial purposes».
Thus, when the author submits his/her contribution, he/she explicitly accepts this assignment of publishing and publishing rights. Authors also authorize Debats. Journal on Culture, Power and Society to include their work in an issue of the journal to be distributed and sold.